Generalized quantum potentials in scale relativity

نویسنده

  • Laurent Nottale
چکیده

We first recall that the system of fluid mechanics equations (Euler and continuity) that describes a fluid in irrotational motion subjected to a generalized quantum potential (in which the constant is no longer reduced to the standard quantum constant h̄) is equivalent to a generalized Schrödinger equation. Then we show that, even in the case of the presence of vorticity, it is also possible to obtain, for a large class of systems, a Schrödinger-like equation of the vectorial field type from the continuity and Euler equations including a quantum potential. The same kind of transformation also applies to a classical charged fluid subjected to an electromagnetic field and to an additional potential having the form of a quantum potential. Such a fluid can therefore be described by an equation of the Ginzburg-Landau type, and is expected to show some superconducting-like properties. Moreover, a Schrödinger form can be obtained for a fluctuating rotational motion of a solid. In this case the mass is replaced by the tensor of inertia, and a generalized form of the quantum potential is derived. We finally reconsider the case of a standard diffusion process, and we show that, after a change of variable, the diffusion equation can also be given the form of a continuity and Euler system including an additional potential energy. Since this potential is exactly the opposite of a quantum potential, the quantum behavior may be considered, in this context, as an anti-diffusion.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Macroscopic Quantum-Type Potentials in Theoretical Systems Biology

We review in this paper the use of the theory of scale relativity and fractal space-time as a tool particularly well adapted to the possible development of a future genuine systems theoretical biology. We emphasize in particular the concept of quantum-type potentials, since, in many situations, the effect of the fractality of space-or of the underlying medium-can be reduced to the addition of s...

متن کامل

ar X iv : h ep - t h / 95 12 04 4 v 2 6 N ov 1 99 6 STRING THEORY , SCALE RELATIVITY AND THE GENERALIZED UNCERTAINTY PRINCIPLE

Extensions (modifications) of the Heisenberg Uncertainty principle are derived within the framework of the theory of Special Scale-Relativity proposed by Nottale. In particular , generalizations of the Stringy Uncertainty Principle are obtained where the size of the strings is bounded by the Planck scale and the size of the Universe. Based on the fractal structures inherent with two dimensional...

متن کامل

String Theory, Scale Relativity and the Generalized Uncertainty Principle

Extensions (modi cations) of the Heisenberg Uncertainty principle are derived within the framework of the theory of Special Scale-Relativity proposed by Nottale. In particular, generalizations of the Stringy Uncertainty Principle are obtained where the size of the strings is bounded by the Planck scale and the size of the Universe. Based on the fractal structures inherent with two dimensional Q...

متن کامل

Foundation of quantum mechanics and gauge field theories in scale relativity∗

We have suggested to extend the principle of relativity to scale transformations of the reference systems, then to apply this “principle of scale relativity” to a description of the space-time geometry generalized in terms of a nondifferentiable (therefore fractal) continuum. In such a framework, one can derive from first principles the main postulates of quantum mechanics. The basic tools of q...

متن کامل

Scale-relativity, Fractal Space-time and Gravitational Structures

The theory of scale relativity extends Einstein's principle of relativity to scale transformations of resolutions. It is based on the giving up of the axiom of differentiability of the space-time continuum. Three consequences arise from this withdrawal: (i) The geometry of space-time must be fractal, i.e., explicitly resolutiondependent. (ii) The geodesics of the non-differentiable space-time a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008